

Applying Hypothesis-Testing Methods to Help Inform Causality Conclusions from Epidemiology Studies

SABINE LANGE, PHD, DABT LALITA SHRESTHA, PHD FEBRUARY 19, 2020 TOXICOLOGY, RISK ASSESSMENT, AND RESEARCH DIVISION TEXAS COMMISSION ON ENVIRONMENTAL QUALITY

TEXAS COMMISSION ON ENVIRONMENTAL QUALITY

Outline

- Background Interpreting epidemiology studies
- Case study concept Patterns in epidemiology study results
- Theoretical basis evidence for expected patterns
- Positive control lung cancer and tobacco smoke
- Negative control cancer and dietary constituents
- Conclusions and future work

Specific requests for input from panelists and audience members will be distributed throughout

Background – Epidemiology Studies

Epidemiology (or observational) studies provide important information for understanding the relationship between a stressor and an adverse effect that is a crucial first step in a risk assessment

Often provide information that cannot be obtained using any other research design – at low concentrations, in vulnerable populations, etc

Epidemiology studies are associational by design – that is, they provide information about the *association* between a stressor and an effect, and not about the *causation* (or even necessarily the direction of the relationship) between the stressor and the effect

Interpreting Epidemiology Studies

Because of the association/causation issue, epidemiological studies can be difficult to interpret, particularly in isolation

What do we do with epidemiology study results?

- Interpret carefully: e.g. only trust what is corroborated in randomized controlled trial or other experimental studies
- Conduct meta-analyses: useful, but can only be done on studies with similar methods and results, and they don't address underlying flaws (i.e. combining many flawed results doesn't produce an unflawed effect estimate)
- Use a somewhat subjective weight-of-evidence framework for determining validity of conclusions
- Hypothesis-test: if there is some sort of causal relationship, there should be an identifiable pattern in the epidemiology study results

Case-Study Concept

Using the full literature of observational studies, if a true causal relationship exists between an exposure and a health effect, then we might expect patterns in the study results based on:

- Exposure and outcome variability
- Exposure concentration (i.e. dose-response)
- Specificity of the health effect
- Severity of the health effect
- This case study tests this idea through:
 - Literature review and simple simulations
 - Positive control smoking and lung cancer
 - Negative control nutrient supplementation and cancer

Food for Thought: If the idea of the patterns is technically sound, but the patterns aren't as expected in the positive and negative controls, then what is the explanation?

Literature Review and Simple Simulations

Theoretical Basis: Exposure Variability

Concept: It is often stated that when there is an increase in the random variability or mis-classification of an exposure estimate, then the effect estimate will be biased towards the null (attenuated)

Hypothesis: in two similar studies, the one with the more precise exposure estimate would be expected to have a higher effect estimate

Theoretical Basis: Exposure Variability

Classical Error – the exposure estimate varies randomly around the true value and has a greater variation than the true exposure (e.g. instrument error). Expected to bias effect estimate towards the null

• Hausman (2001), Zeger et al. (2000), Hutcheon et al. (2010), Szipiro et al. (2011), Goldman et al. (2011)

Berkson Error – the true exposure varies randomly around the estimated exposure and has greater variation than the estimated values (e.g. using the average of monitored concentrations from many monitors around a city). Not expected to bias the effect estimate, but will increase the width of the confidence interval

• Zeger et al. (2000), Szipiro et al. (2011), Goldman et al. (2011)

Theoretical Basis: Outcome Variability

Generally outcome measurement error will not bias the effect estimate but will increase the width of the error bars. (Hausman 2001, Hutcheon et al. 2010)

Exposure vs Outcome Error – Linear Regression

Exposure error has a far greater impact on the magnitude of the slope than does outcome error

Both exposure and outcome error cause a similar magnitude increase in the width of confidence intervals around the slope estimate

Exposure vs Outcome Error – Log-Linear Regression

True Value = 0.05

Exposure error has a similar impact on the magnitude of the log-linear slope compared to outcome error

 Exposure error causes a somewhat greater increase in the CI around the slope, compared to outcome error

Exposure Variability - Requirements

Studies have shown that the relationship between exposure error and the exposure-response estimate can be quite complicated (Brakenhoff et al., 2018; Hausman, 2001; Jurek et al., 2008, 2005; Loken and Gelman, 2017)

Requirements for classical error biasing towards null, and Berkson error generating no bias but increasing confidence intervals:

- The underlying concentration-response is linear (Zeger et al 2000, Fuller et al. 1987)
- The exposure estimate is a good surrogate (well-correlated) for the true exposure (Zeger et al 2000)
- Differences between the exposure estimate and the true exposure are constant (Zeger et al 2000)
- Other variables in the regression are measured without error (Szpiro et al. 2011, Corrothers & Evans 2000, Cefalu & Dominici 2014, Brakenhoff et al. 2018)
- There is no correlation between the exposure measurement error and the true exposure (Hausman 2001)
- There is no correlation between the exposure measurement error and other error terms in the regression (Hausman 2001)

Theoretical Basis: Outcome and Exposure Variability

Exposure measurement error – may bias an effect estimate towards the null, but this rule can only be applied to simple regressions with single predictor variables. Should not be applied if the regression is more complex

Outcome measurement error – Depends on a simple system and how the outcome is modeled – e.g. if the outcome is limited such as in a logit or probit system (with an all or none response), then this could bias the effect estimate or make it inconsistent (Hausman 2001)

<u>Conclusion</u>: Unless the study has a very simple, one-variable linear analysis one should not make an assumption of effect estimate attenuation with increasing exposure error, or about effect estimate changes (or lack thereof) with outcome error

Request for Input

Your thoughts about how exposure or outcome error can bias (or not bias) effect sizes?

Is there value in continuing to pursue exposure and outcome error in this case study? (e.g. applying it to the positive and negative controls?)

Theoretical Basis: Dose (Exposure)-Response

<u>**Concept</u>**: Based on toxicological theory, higher exposure concentrations should produce greater effect estimates, and more severe health effects.</u>

Often epidemiology studies present a single effect estimate (a slope, relative risk, odds ratio, hazard ratio, etc) to represent the relationship between exposure and outcome. From a dose-response (or exposure-response) standpoint, there are several ways to interpret this:

- If the effect estimate is statistically significant, there is a dose-response between exposure and outcome
- In the absence of the primary data, dose-response cannot be assessed because the model assumes a certain shape and a constant increase in outcome with dose

Theoretical Basis: Dose (Exposure)-Response

- One way to test for the presence of a dose (exposure)-response is to look at categorical results – there should be an increasing effect estimate with increasing dose, relative to a single reference group
- This is true for both linear and log-linear relationships, and with exposure and/or outcome error in the data
- Blue dots are the continuous data (with the equation for the relationship)
- Orange squares are the categorical data points showing increasing effect (compared to the first quintile) with increasing dose quintile

Request for Input

Your thoughts about using categorical analyses (and not relying on slopes) for dose (exposure) – response assessment?

Theoretical Basis: Specificity

<u>**Concept</u>**: More specific health effects (that are causally-related to an exposure) should have greater effect estimates than less specific health effects because of less noise in the data (assuming that an agent is not associated with all health effects)</u>

The principle should be a straight-forward signal-to-noise problem. If there is only one causal relationship in a subset of a dataset, but many other data points are included that are not causally related to the exposure, then there will be a diminishment of the signal from the subset of data.

Similar, but not the same as exposure or outcome measurement error, because this is variability in the effect estimate (β /slope), not in the predictor or the outcome

Specificity -Ratios

The higher the number of non-specific outcome endpoints, the greater the difference between specific and non-specific effect estimates.

Non-Specific Value = 0

Specific Value = 1.05

0

0.2

0.4

0.6

Slope

0.8

Specificity: Application of Ratios?

According to the simulations:

Total Effect Estimate = Specific Effect Estimate x Non-Specific Effect Estimate x (Specific sample size/total sample size)

Can we quantitatively use the observation that the greater the number of non-specific compared to specific endpoints, the greater the difference between the total and the specific effect estimates?

E.g. 160 cancer cases, 60 lung cancer cases; lung cancer RR = 10

Assuming non-specific RR = 1: Total Effect Estimate = 10 x 1 x (60/160) = RR 3.75

Assuming non-specific RR = 1.5 (average): Total Effect Estimate = 10 x 1.5 x (60/160) = RR 5.625

Specificity – With Exposure & Outcome Error

TEXAS COMMISSION ON ENVIRONMENTAL QUALITY

Theoretical Basis: Specificity

Patterns of effects of outcome specificity:

- Added exposure error or outcome error doesn't change the difference between total and specific outcome
- Having a small effect estimate does not seem to decrease the difference between the total and specific outcome
- Higher number of non-specific outcome endpoints, the greater the difference between specific and non-specific effect estimates
- All of these patterns are true for both linear and log-linear regression analyses

♦ What to look for:

- Studies that investigate both more and less specific endpoints in the same group (e.g. all cancer and lung cancer, all mortality and CVD mortality, etc)
- Based on this hypothesis, we would expect that if a specific endpoint is genuinely causally related to the exposure, that it should have a higher effect estimate compared to the less-specific endpoint group
- In addition, the less common the specific outcome, the greater the expected differential compared to the effect estimate for the larger endpoint group

Request for Input

Your thoughts about the utility of investigating patterns of outcome specificity in epidemiology studies?

Can the phenomenon of the ratios of specific to non-specific outcome data points affecting the magnitude of the difference in specific to total effect estimates be used as a predictive pattern?

Theoretical Basis: Severity

Concept: Based on toxicological theory

- Higher exposure concentrations should produce more severe health effects than lower exposure concentrations.
- At the same concentrations, less severe health endpoints should show larger and less variable effect estimates than more severe health endpoints.
- Based on this theory, for linear and log-linear relationships without modeled thresholds, the slope of the relationship (and therefore the HR or RR) is steeper with less severe effects
- *This also holds true with random error incorporated into the exposure or outcome variables
- Because this concept is based on the probability of an effect in the population, the severity hypothesis may not apply to case-control studies (that generates odds and odds ratios) because these studies do not provide probability information about the total population, just for the case and control groups

Severity

E.g. For 100 units of exposure, the risk of a low severity effect is 0.5, of a moderate severity effect is 0.3, and of a high severity effect is 0.1

Request for Input

Your thoughts about the utility of investigating patterns of outcome severity in epidemiology studies?

Do other factors impacting severity (e.g. individual differences, access to health care or screening, etc) decrease the utility of the outcome severity pattern?

Positive and Negative Controls

"In theory, there is no difference between theory and practice. But in practice, there is." --Jan L. A. van de Snepscheut

Positive Control: Smoking & Lung Cancer

We tested for the presence of these patterns using a relationship that has been definitively causally established: smoking and lung cancer

Patterns of dose-response and outcome specificity evaluated in 6 case-control or cohort studies

Dose-Response: Freedman et al., 2008; Powell et al., 2013; Remen et al., 2018

Outcome-Specificity: Lewer et al., 2017; Ordóñez-Mena et al., 2016; Thun et al., 2013

Dose-Response: Smoking & Lung Cancer

Exposure Variable	Ref Quantile	Quantile 2	Quantile 3	Quantile 4	Quantile 5	Evidence of Dose-Response?	
Exposure VariableRef QuantileQuantile 2Quantile 3Quantile 4Quantile 5Evidence of Dose-Response?Powell et al., 2013Lung Cancer, Odds Ratios (95% Cl)Smoking QuantityNeverLightModerateHeavyIso2 (13.69- 10.25)Iso2 (13.69- 10.28)Iso2 (13.69- 10.28)Iso2 (13.69- 							
C	Never	Light	Moderate	Heavy			
Smoking	1	9.32 (8.48-	11.78 (10.79-	15.02 (13.69-		\checkmark	
Quantity	T	10.25)	12.87)	16.48)		•	
Smoking Quantity 1 9.32 (8.48- 10.25) 11.78 (10.79- 12.87) 15.02 (13.69- 16.48)							
Duration of	Never (0)	0-20	20-30	30-40	> 40		
Duration of	1	1 51 (0 74 2 04)	6.37 (3.55-	13.64 (8.19-	28.79 (16.86-	\checkmark	
SHIOKING (915)	T	1.51 (0.74-5.04)	11.41)	22.74)	49.16)	ŕ	
Intensity of	0	0-20	20-30	> 30			
Smoking	1		19.4(11.81-	18.2(10.10-		\checkmark	
(cig/day)	T	0.05(3.70-9.90)	31.86)	32.80)		•	
	0	0-20	20-40	40-60	> 60		
Pack-years	1	2 04 (1 11 2 74)	8.66 (5.10-	25.48 (15.08-	37.39 (19.79-	\checkmark	
	T	2.04 (1.11-3.74)	14.68)	43.04)	70.62)	•	
Cumulative	0	0 - 1	1 – 2	> 2			
Smoking Index	1	1.25 (0.62-2.51)	11.98 (7.32-	29.66 (17.67-		\checkmark	
(CSI)			19.62)	49.80)			

Dose-Response: Smoking & Lung Cancer

Exposure Variable	Ref Quantile	Quantile 2	Quantile 3	Quantile 4	Quantile 5	Evidence of Dose-Response?
Freedman et al., 2	008, Lung Cancer	in Current Smokers	, Hazard Ratios (95	5% CI)		
Intensity of	Never (0)	1-10	11-20	21-30	31-40	
Smoking	1	20.7(16.2, 26.3)	20 5 (24 6-27 0)	25 0 (28 7, 11 8)	176 (228-528)	\checkmark
(cig/day) in Men	T	20.7 (10.5- 20.5)	50.5 (24.0-57.5)	55.9 (20.7- 44.0)	42.0 (55.8-55.8)	•
Intensity of						\checkmark
Smoking	1	13.4 (10.9-16.5)	22.5 (18.8-27.1)	25.2 (20.5-31.0)	40.7 (32.3-51.2)	·
(cig/day) in	-	10.1 (10.0 10.0)	22.3 (10.0 27.1)	20.2 (20.0 01.0)	10.7 (32.3 31.2)	
Women						

Outcome Specificity: Smoking & Lung Cancer

Exposure Variable	Less Specific Outcome		More Sp	ecific Outcome	S			
Lewer et al., smokers : nev	2017, Mortalit er-smokers	y, Ratio of age	-adjusted morta	lity rate per 1	.00,000 person	years in		
	Never Smoker	Ex-Smoker	Current Smoker					
All-Cause Mortality	1	1.33	1.87					
No. Cases	2059	2748	3842					
Lung Cancer or COPD	1	5.17	13.25					
No. Cases	60	310	795					

Outcome Specificity: Smoking & Lung Cancer

Exposure	Less Specific			Мо	re Specific O	utcon	nes			
Variable	Outcome									
Thun et al., 2	013, Mortality, Relat	ive Risk of mortal	ity am	ong those	55-years or	older,	for current smol	kers compared to		
never smoker	ver smokers, 2000-2010 (95% Cl)									
	All Cause Mortality	Lung Cancer	r	CC)PD					
Women	2.76 (2.69 -2.84)	25.66 (23.17-28	.40)	22.35 (19	.55-25.55)					
No. Cases	62965	4785		30)34					
Men	2.80 (2.72-2.88)	24.97 (22.20-28	.09)	25.61 (21	.68-30.25)					
No. Cases	73800	6635		34	178					
Ordóñez-Men (95% Cl)	a et al., 2016, Cance	r Incidence or Mo	ortality	, Hazard ra	tio of curre	nt sm	okers compared	to never-smokers		
	Total Cancer	Lung Cancer	Head	and Neck	Colorect	al	Breast Cancer	Prostate Cancer		
			(Cancer	Cancer	-				
Cancer Incidence	1.44 (1.28- 1.63)	13.1 (9.90- 17.3)	2.89	(1.98-4.21)	1.20 (1.07-:	1.34)	1.07 (1.00-1.15)	0.81 (0.72-0.91)		
No. Cases	26007	6333		1051	2064		2536	3701		
Cancer Mortality	2.19 (1.83-2.63)	11.5 (8.21-16.1)	3.74	(2.38-5.89)	1.35 (1.16-2	1.58)	1.28 (1.06-1.55)	1.26 (0.97-1.64)		
No. Cases	13450	6165		359	912		466 ×	589		

Summary: Smoking & Lung Cancer

♦ Dose-Response: Overall ✓ (evidence for dose-response pattern)

- Powell et al., 2013 ✓
- Remen et al., 2018 🗸
- Freedman et al., 2008 ✓

Outcome-Specificity: Overall

- Lewer et al., 2017 ✓
- Thun et al., 2013 🗸
- Ordóñez-Mena et al., 2016 🗸

Smoking and Lung Cancer – strong evidence of dose-response and outcome specificity patterns

Negative Control: Dietary Constituents & Cancer

Multiple epidemiology studies conducted in the 1980s and 1990s demonstrated associations between, among others, lower β-carotene serum concentrations and lung cancer, retinol (vitamin A) and lung cancer, and α-tocopherol (vitamin E) and lung and prostate cancer.

Multiple randomized controlled trials demonstrated that there was no causal relationship between these dietary constituents and cancer:

- Beta-Carotene and Retinol Efficacy Trial (CARET) 18,314 men and women randomly assigned placebo or 30 mg β-carotene plus 25000 IU retinyl palmitate (vitamin A) → terminated 21 months early because of an increase in lung cancer in the intervention group
- Alpha-Tocopherol, Beta-Carotene Cancer Prevention (ATBC) Study 29,133 male smokers randomly assigned placebo, α -tocopherol (vitamin E), β -carotene, or both \rightarrow no effect of α -tocopherol on lung cancer (but less prostate cancer \rightarrow disproved in SELECT trials), β -carotene supplementation increased lung cancer incidence

Negative Control: Dietary Constituents & Cancer

Patterns of dose-response and outcome specificity evaluated in 9 case-control or cohort studies

Dose-Response:

- B-Carotene: Comstock et al., 1991; Connett et al., 1989; Nomura et al., 1985; Wald et al., 1988
- Retinol: Friedman et al., 1986; Menkes et al., 1986

Outcome-Specificity:

- B-Carotene: Wald et al., 1988; Connett et al., 1989; Knekt et al., 1990; Willett et al., 1984
- Retinol: Connett et al., 1989; Knekt et al., 1990; Willett et al., 1984

Dose-Response: β-Carotene & Lung Cancer

Exposure	Ref Quantile	Quantile 2	Quantile 3	Quantile 4	Quantile 5	Trend p-	
Variable						value	
Comstock et al., 19	91, Lung Canc	er Incidence (n =	99), Odds Ratio				
Serum Concentration	1 st (Highest)	2 nd	3 rd	4 th	5 th (Lowest)	Trend	
	1	1.2	1.8	1.7	2.2	0.04	\checkmark
Connett et al., 198	9, Lung Cancer	Deaths (n = 66),	Odds Ratio				
Serum Concentration	1 st (Highest)	2 nd	3 rd	4 th	5 th (Lowest)	Trend	
B-Carotene	1	2.17	2.72	1.6	2.32	0.08	×

Dose-Response: β-Carotene & Lung Cancer

Exposure Variable	Ref Quantile	Quantile 2	Quantile 3	Quantile 4	Quantile 5	Trend p- value	
Nomura et al., 198	5, Lung Cancer	Incidence (n = 74	4), Odds Ratio (9	5% CI)			
Serum Concentration	1 st (Highest)	2 nd	3 rd	4 th	5 th (Lowest)	Trend	
Unadjusted estimate	1	1.7 (0.6-4.7)	1.5 (0.5 - 4.1)	2.9 (1.1- 7.3)	3.4 (1.4 - 8.4)	0.004	~
Adjusted estimate	1	1.5 (0.5 - 4.1)	1.2 (0.4 - 3.5)	2.4 (0.9 - 6.2)	2.2 (0.8 - 6)	0.04	~
Wald et al., 1988, I	Lung Cancer II	ncidence (n = 50	0), Relative Ris	k compared to	'all' category		
Serum Concentration	1 st (Highest)	2 nd	3 rd	4 th	5 th (Lowest)	Trend	
	0.82	0.35	0.68	0.93	2	0.008	^

Outcome Specificity: β-Carotene & Lung Cancer

Exposure Variable	Less Specific	More Specific Outcomes				
	Outcome					
Wald et al., 1988, Canc	er Incidence, Perc	ent Difference in	Serum Concent	tration betw	een Cases and Con	trols (Std Error)
	All Cancer	Lung	Colorectal	Stomach	Bladder	CNS
Serum Concentration						
	- 10% (4)	- 22% (8)	- 11% (10)	-27 % (17)	- 9% (20)	- 10% (15)
No. Cases	271	50	30	13	15	17
		\checkmark	x	\checkmark	×	×
		,				
Connett et al., 1989, Ca	ncer Deaths, Mea	an Difference in S	Serum Concentra	ation betwe	en Cases and Contr	ols
Serum Concentration	All Cancer	Lung	GI Tract			
(µg/dL)						
B-Carotene	-0.6	-2.70	0.6			
No. Cases	156	66	28			
		\checkmark	×			

Outcome Specificity: β-Carotene & Lung Cancer

Exposure Variable	Less Specific Outcome	More Specific Outcomes					
Knekt et al., 1990, Cancer	Incidence, Mean Dif	ference in Serum Cor	centration bet	ween Cases and	d Controls (Std E	rror)	
Serum Concentration	All Cancer	Lung	Stomach	Prostate/ Brea	ast		
(μg/L)							
Men	-11.8	-17.2 🗸	-7.4 🗶	-0.4	×		
No. Cases	453	144	48	37			
Women	-7	-40 🗸	27 🗶	-18.8	 Image: A set of the set of the		
No. Cases	313	8	28	67			
Willett et al., 1984, Cancer	Incidence, Caroten	oids, Mean Difference	e in Serum Con	centration betw	veen Cases and (Controls (Std Error)	
Serum Concentration	All Cancer	Lung	Breast	Prostate	GI		
(µg/L)	8.2 (6.4)	9 (16.5)	8.9 (17.2)	4.3 (19.4)	10.5 (19.9)		
No. Cases	111	17	14	11	11		
		×	×	×	×		

Summary: *β*-Carotene & Lung Cancer

Dose-Response: Overall ~ (equivocal pattern of dose-response)

- Comstock et al., 1991 ✓
- Connett et al., 1989 🗴
- Nomura et al., 1985 ~ unadjusted & ~ adjusted
- Wald et al., 1988 ~

♦ Outcome-Specificity: Overall ✓ (evidence for outcome-specificity pattern)

- Wald et al., 1988 🗸
- Connett et al., 1989 🗸
- Knekt et al., 1990 ✓ men & ✓ women (only 8 cases)
- Willett et al., 1984 🗴

Dose-Response: Retinol & Lung Cancer

Exposure Variable	Ref Quantile	Quantile 2	Quantile 3	Quantile 4	Quantile 5	Trend p-value	
Friedman et al., 198	86, Lung Cancer	Incidence (n = 1	51), Odds Ratio				
Serum Concentration	1 st (Highest)	2 nd	3 rd	4 th	5 th (Lowest)	Trend	
Unmatched analysis	1	1.4	1.1	0.9	1.2		×
Matched analysis	1	1.3	1.1	0.9	1.2		×
Menkes et al., 1986	, Lung Cancer In	cidence (n = 99)	, Odds Ratio				
Serum	1 st (Highest)	2 nd	3 rd	4 th	5 th (Lowest)	Trend	
Concentration	1	1.62	0.73	0.92	1.13	0.68	x

Outcome Specificity: Retinol & Lung Cancer

Exposure Variable	Less Specific Outcome	More Specific Outcomes							
Knekt et al., 1990, Cancer Inc	idence, Mean Dif	fference in Serur	m Concentrat	ion between	Cases and Controls (S	Std Error)			
Serum Concentration (µg/L)	All Cancer	Lung	Rectum	Stomach	Prostate/ Breast				
Men	-22	-38 🗸	-41 🗸	-19 🕽	c 16 🗶				
No. Cases	453	144	15	48	37				
Women	-17	24 🗴	-30 🗸	4	-22 ~				
No. Cases	313	8	22	28	67				
Willett et al., 1984, Cancer Incidence, Mean Difference in Serum Concentration between Cases and Controls (Std Error)									
	All Cancer	Lung	Breast	Prostate	GI				
Serum Concentration (µg/L)	-0.6 (2.5)	7.4 (6.3)	5.4 (6.6)	1.7 (7.5)	-18.4 (7.7)				
No. Cases	111	17	14	11	11				
		×	×	×	\checkmark				
Connett et al., 1989, Cancer I	Deaths, Mean Dif	ference in Serun	n Concentrat	ion between	Cases and Controls				
Serum Concentration (µg/dl	All Cancer	Lung	;						
	-1	-3.1							
No. Cases	156	66							
		\checkmark							

Summary: Retinol & Lung Cancer

Dose-Response: Overall × (no dose-response pattern)

- Friedman et al., 1986 × matched & × unmatched analyses
- Menkes et al., 1986 🗴

Outcome-Specificity: Overall ~ (equivocal pattern of outcome-specificity)

- Knekt et al., 1990 ✓ men & × women (only 8 cases)
- Willett et al., 1984 🗴
- Connett et al., 1989 🗸

Request for Input

Your thoughts about interpreting unclear evidence of patterns of doseresponse and outcome specificity?

Your thoughts about integrating the evidence among and between hypothesized patterns?

Summary: Positive and Negative Controls

Lung Cancer	Smoking	β-Carotene	Retinol
Dose-Response	\checkmark	~	×
Outcome Specificity	\checkmark	\checkmark	~

Positive Control: Smoking and Lung Cancer – strong evidence of dose-response and outcome specificity patterns

Negative Control: β-Carotene and Lung Cancer – equivocal evidence of doseresponse pattern, evidence of outcome specificity pattern

Negative Control: Retinol and Lung Cancer – no evidence of dose-response pattern, equivocal evidence of outcome specificity pattern

Conclusions

Theory and simulation studies demonstrate a basis for patterns of dose-response and outcome specificity in epidemiology study results; possibly show a pattern for outcome severity; and suggest that exposure and outcome error should not be used for predicting patterns of study results

The patterns of dose-response and outcome specificity are observed in the positive control of smoking and lung cancer

The pattern of dose-response is equivocal or not present in the negative controls of β-carotene or retinol and lung cancer

The pattern of outcome specificity is present or equivocal in the negative controls of βcarotene or retinol and lung cancer

Future Work

Incorporate a study quality component for study inclusion before investigating hypothesized patterns

Further develop the theory of the outcome severity pattern

Consider the difference between whether a causal relationship could still exist in the absence of these patterns, or if a non-causal relationship could exist in the presence of these patterns

Further investigate the positive and negative control scenarios for these patterns, including assumptions about the ratios of specific to non-specific outcomes

♦ And...?

References

- Alpha-Tocopherol, B.C.C.P.S.G., 1994. The effect of vitamin E and beta carotene on the incidence of lung cancer and other cancers in male smokers. N. Engl. J. Med. 330, 1029–35. https://doi.org/10.1056/NEJM199404143301501
- Brakenhoff, T.B., van Smeden, M., Visseren, F.L.J., Groenwold, R.H.H., 2018. Random measurement error: Why worry? An example of cardiovascular risk factors. PLoS One 13, e0192298. https://doi.org/10.1371/journal.pone.0192298
- Carrothers, T.J., Evans, J.S., 2000. Assessing the impact of differential measurement error on estimates of fine particle mortality. J. Air Waste Manag. Assoc. 50, 65–74.
- Comstock, G.W., Helzlsouer, K.J., Bush, T.L., 1991. Prediagnostic serum levels of carotenoids and vitamin E as related to subsequent cancer in Washington County, Maryland. Am. J. Clin. Nutr. 53. https://doi.org/10.1093/ajcn/53.1.260S
- Connett, J.E., Kuller, L.H., Kjelsberg, M.O., Polk, B.F., Collins, G., Rider, A., Hulley, S.B., 1989. Relationship between carotenoids and cancer. The Multiple Risk Factor Intervention Trial (MRFIT) Study. Cancer 64, 126–34. https://doi.org/10.1002/1097-0142(19890701)64:1<126::aidcncr2820640122>3.0.co;2-h
- Freedman, N.D., Leitzmann, M.F., Hollenbeck, A.R., Schatzkin, A., Abnet, C.C., 2008. Cigarette smoking and subsequent risk of lung cancer in men and women: analysis of a prospective cohort study. Lancet. Oncol. 9, 649–56. https://doi.org/10.1016/S1470-2045(08)70154-2
- Friedman, G.D., Blaner, W.S., Goodman, D.S., Vogelman, J.H., Brind, J.L., Hoover, R., Fireman, B.H., Orentreich, N., 1986. Serum retinol and retinolbinding protein levels do not predict subsequent lung cancer. Am. J. Epidemiol. 123, 781–789. https://doi.org/10.1093/oxfordjournals.aje.a114307
- Fuller, W.A., 1987. Measurement Error Models. John Wiley & Sons, 1987.
- Hausman, J., 2001. Mismeasured variables in econometric analysis: Problems from the right and problems from the left. J. Econ. Perspect. 15, 57–67. https://doi.org/10.1257/jep.15.4.57
- Jurek, A.M., Greenland, S., Maldonado, G., 2008. How far from non-differential does exposure or disease misclassification have to be to bias measures of association away from the null? Int. J. Epidemiol. 37, 382–5. https://doi.org/10.1093/ije/dym291

References

- Jurek, A.M., Greenland, S., Maldonado, G., Church, T.R., 2005. Proper interpretation of non-differential misclassification effects: expectations vs observations. Int. J. Epidemiol. 34, 680–7. https://doi.org/10.1093/ije/dyi060
- Klein, E.A., Thompson, I.M., Tangen, C.M., Crowley, J.J., Lucia, S., Goodman, P.J., Minasian, L.M., Ford, L.G., Parnes, H.L., Gaziano, J.M., Karp, D.D., Lieber, M.M., Walther, P.J., Klotz, L., Parsons, J.K., Chin, J.L., Darke, A.K., Lippman, S.M., Goodman, G.E., Meyskens, F.L., Baker, L.H., 2011. Vitamin E and the risk of prostate cancer: The selenium and vitamin E cancer prevention trial (SELECT). JAMA J. Am. Med. Assoc. 306, 1549–1556. https://doi.org/10.1001/jama.2011.1437
- Knekt, P., Aromaa, A., Maatela, J., Aaran, R.K., Nikkari, T., Hakama, M., Hakulinen, T., Peto, R., Teppo, L., 1990. Serum vitamin a and subsequent risk of cancer: Cancer incidence follow-up of the finnish mobile clinic health examination survey. Am. J. Epidemiol. 132, 857–870. https://doi.org/10.1093/oxfordjournals.aje.a115728
- Lewer, D., McKee, M., Gasparrini, A., Reeves, A., de Oliveira, C., 2017. Socioeconomic position and mortality risk of smoking: evidence from the English Longitudinal Study of Ageing (ELSA). Eur. J. Public Health 27, 1068–1073. https://doi.org/10.1093/eurpub/ckx059
- Loken, E., Gelman, A., 2017. Measurement error and the replication crisis: The assumption that measurement error always reduces effect sizes is false. Science (80-.). 355, 582–584. https://doi.org/10.1126/science.aam5409
- Menkes, M.S., Comstock, G.W., Vuilleumier, J.P., Helsing, K.J., Rider, A.A., Brookmeyer, R., 1986. Serum beta-carotene, vitamins A and E, selenium, and the risk of lung cancer. N. Engl. J. Med. 315, 1250–4. https://doi.org/10.1056/NEJM198611133152003
- Nomura, A.M.Y., Stemmermann, G.N., Heilbrun, L.K., Salkeld, R.M., Vuilleumier, J.P., Nomura, A.M.Y., 1985. Serum Vitamin Levels and the Risk of Cancer of Specific Sites in Men of Japanese Ancestry in Hawaii. Cancer Res. 45, 2369–2372.
- Omenn, G.S., Goodman, G.E., Thornquist, M.D., Balmes, J., Cullen, M.R., Glass, A., Keogh, J.P., Meyskens, F.L., Valanis, B., Williams, J.H., Barnhart, S., Cherniack, M.G., Brodkin, C.A., Hammar, S., 1996. Risk factors for lung cancer and for intervention effects in CARET, the beta-carotene and retinol efficacy trial. J. Natl. Cancer Inst. 88, 1550–1559. https://doi.org/10.1093/jnci/88.21.1550

References

- Ordóñez-Mena, J.M., Schöttker, B., Mons, U., Jenab, M., Freisling, H., Bueno-de-Mesquita, B., O'Doherty, M.G., Scott, A., Kee, F., Stricker, B.H., Hofman, A., de Keyser, C.E., Ruiter, R., Söderberg, S., Jousilahti, P., Kuulasmaa, K., Freedman, N.D., Wilsgaard, T., de Groot, L.C., Kampman, E., Håkansson, N., Orsini, N., Wolk, A., Nilsson, L.M., Tjønneland, A., Pająk, A., Malyutina, S., Kubínová, R., Tamosiunas, A., Bobak, M., Katsoulis, M., Orfanos, P., Boffetta, P., Trichopoulou, A., Brenner, H., Consortium on Health and Ageing: Network of Cohorts in Europe and the United States (CHANCES), 2016. Quantification of the smoking-associated cancer risk with rate advancement periods: meta-analysis of individual participant data from cohorts of the CHANCES consortium. BMC Med. 14, 62. https://doi.org/10.1186/s12916-016-0607-5
- Powell, H.A., Iyen-Omofoman, B., Hubbard, R.B., Baldwin, D.R., Tata, L.J., 2013. The association between smoking quantity and lung cancer in men and women. Chest 143, 123–129. https://doi.org/10.1378/chest.12-1068
- Remen, T., Pintos, J., Abrahamowicz, M., Siemiatycki, J., 2018. Risk of lung cancer in relation to various metrics of smoking history: A case-control study in Montreal 11 Medical and Health Sciences 1117 Public Health and Health Services. BMC Cancer 18, 1–12. https://doi.org/10.1186/s12885-018-5144-5
- Szpiro, A.A., Paciorek, C.J., Sheppard, L., 2011. Does more accurate exposure prediction necessarily improve health effect estimates? Epidemiology 22, 680–685. https://doi.org/10.1097/EDE.0b013e3182254cc6
- Thun, M.J., Carter, B.D., Feskanich, D., Freedman, N.D., Prentice, R., Lopez, A.D., Hartge, P., Gapstur, S.M., 2013. 50-Year trends in smoking-related mortality in the United States. N. Engl. J. Med. 368, 351–364. https://doi.org/10.1056/NEJMsa1211127
- Wald, N.J., Thompson, S.G., Densem, J.W., Boreham, J., Bailey, A., 1988. Serum beta-carotene and subsequent risk of cancer: Results from the BUPA study. Br. J. Cancer 57, 428–433. https://doi.org/10.1038/bjc.1988.97
- Willett, W.C., Polk, B.F., Underwood, B.A., Stampfer, M.J., Pressel, S., Rosner, B., Taylor, J.O., Schneider, K., Hames, C.G., 1984. Relation of serum vitamins A and E and carotenoids to the risk of cancer. N. Engl. J. Med. 310, 430–4. https://doi.org/10.1056/NEJM198402163100705
- Zeger, S.L., Thomas, D., Dominici, F., Samet, J.M., Schwartz, J., Dockery, D., Cohen, A., 2000. Exposure measurement error in time-series studies of air pollution: concepts and consequences. Environ. Health Perspect. 108, 419–26.

Dose-Response: α-Tocopherol & Lung Cancer

Exposure Variable	Ref Quantile	Quantile 2	Quantile 3	Quantile 4	Quantile 5	Trend p-value		
Comstock et al., 1991, Cancer Incidence, Odds Ratio								
Serum Concentration	1 st (Highest)	2 nd	3 rd	4 th	5 th (Lowest)	Trend		
Lung (n = 99)	1	1.3	2.2	1.9	2.5	0.04		
Prostate (n = 103)	1	1.6	1.4	1.1		0.94		

 \sim

X

Outcome Specificity: α-Tocopherol & Lung Cancer

Exposure Variable	Less Specific Outcome	More Specific Outcomes					
Willett et al., 1984, Cancer Incidence, Mean Difference in Serum Concentration between Cases and							
Controls (Std Error)							
Serum Concentration (mg/dL)	All Cancer	Lung	Breas	reast Prostat		GI	
	-0.05 (0.06)	0.13 (0.15)	-0.16 (0.17))	-0.09 (0.19)	-0.15 (0.2)	
No. Cases	111	17 🗴	14 ~		11 ~	11 ~	
Connett et al., 1989, Cancer Deaths, Mean Difference in Serum Concentration between Cases and							
Controls							
Serum	All Cancer	Lung					
Concentration (mg/dL)	0.03	-0.06					
No. Cases	156	66					
		\checkmark					

Summary: α-Tocopherol & Lung Cancer

Dose-Response: Overall ~ (equivocal pattern of dose-response)

Comstock et al., 1991 - ~

Outcome-Specificity: Overall ~ (equivocal pattern of outcome-specificity)

- Willett et al., 1984 🗴
- Connett et al., 1989 🗸